3.8 Proceedings Paper

TrueHeart: Continuous Authentication on Wrist-worn Wearables Using PPG-based Biometrics

Publisher

IEEE
DOI: 10.1109/infocom41043.2020.9155526

Keywords

-

Funding

  1. National Science Foundation [CNS1566455, CNS1826647, CNS1954959, CCF1909963, CCF2000480]
  2. ARO Grant [W911NF-18-1-0221]

Ask authors/readers for more resources

Traditional one-time user authentication processes might cause friction and unfavorable user experience in many widely-used applications. This is a severe problem in particular for security-sensitive facilities if an adversary could obtain unauthorized privileges after a user's initial login. Recently, continuous user authentication (CA) has shown its great potential by enabling seamless user authentication with few active participation. We devise a low-cost system exploiting a user's pulsatile signals from the photoplethysmography (PPG) sensor in commercial wrist-worn wearables for CA. Compared to existing approaches, our system requires zero user effort and is applicable to practical scenarios with non-clinical PPG measurements having motion artifacts (MA). We explore the uniqueness of the human cardiac system and design an MA filtering method to mitigate the impacts of daily activities. Furthermore, we identify general fiducial features and develop an adaptive classifier using the gradient boosting tree (GBT) method. As a result, our system can authenticate users continuously based on their cardiac characteristics so little training effort is required. Experiments with our wrist-worn PPG sensing platform on 20 participants under practical scenarios demonstrate that our system can achieve a high CA accuracy of over 90% and a low false detection rate of 4% in detecting random attacks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available