4.8 Article

RIG-I Is a Key Antiviral Interferon-Stimulated Gene Against Hepatitis E Virus Regardless of Interferon Production

Journal

HEPATOLOGY
Volume 65, Issue 6, Pages 1823-1839

Publisher

WILEY
DOI: 10.1002/hep.29105

Keywords

-

Funding

  1. European Association for the Study of the Liver
  2. Netherlands Organization for Scientific Research (VENI) [916-13-032]
  3. Dutch Digestive Foundation [CDG 1304]
  4. Daniel den Hoed Foundation
  5. Erasmus MC-University Medical Center
  6. China Scholarship Council [201306300027, 201303250056, 201206150075, 201307720045, 201207720007]

Ask authors/readers for more resources

Interferons (IFNs) are broad antiviral cytokines that exert their function by inducing the transcription of hundreds of IFN-stimulated genes (ISGs). However, little is known about the antiviral potential of these cellular effectors on hepatitis E virus (HEV) infection, the leading cause of acute hepatitis globally. In this study, we profiled the antiviral potential of a panel of important human ISGs on HEV replication in cell culture models by overexpression of an individual ISG. The mechanism of action of the key anti-HEV ISG was further studied. We identified retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated protein 5, and IFN regulatory factor 1 (IRF1) as the key anti-HEV ISGs. We found that basal expression of RIG-I restricts HEV infection. Pharmacological activation of the RIG-I pathway by its natural ligand 5'-triphosphate RNA potently inhibits HEV replication. Overexpression of RIG-I activates the transcription of a wide range of ISGs. RIG-I also mediates but does not overlap with IFN-alpha-initiated ISG transcription. Although it is classically recognized that RIG-I exerts antiviral activity through the induction of IFN production by IRF3 and IRF7, we reveal an IFN-independent antiviral mechanism of RIG-I in combating HEV infection. We found that activation of RIG-I stimulates an antiviral response independent of IRF3 and IRF7 and regardless of IFN production. However, it is partially through activation of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade of IFN signaling. RIG-I activated two distinct categories of ISGs, one JAK-STAT-dependent and the other JAK-STAT-independent, which coordinately contribute to the anti-HEV activity. Conclusion: We identified RIG-I as an important anti-HEV ISG that can be pharmacologically activated; activation of RIG-I stimulates the cellular innate immunity against HEV regardless of IFN production but partially through the JAK-STAT cascade of IFN signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available