4.0 Article

Transport of silver nanoparticles from nanocomposite Ag/alginate hydrogels under conditions mimicking tissue implantation

Journal

HEMIJSKA INDUSTRIJA
Volume 71, Issue 5, Pages 383-394

Publisher

ASSOC CHEMICAL ENGINEERS SERBIA
DOI: 10.2298/HEMIND160713049K

Keywords

silver nanoparticles; aggregation; convection; mathematical modeling; tissue implants

Funding

  1. Ministry of Education, Science and Technological Development of the Republic of Serbia [III 45019]

Ask authors/readers for more resources

The aim of this work was to assess phenomena occurring during AgNP transport from nanocomposite Ag/alginate hydrogels under conditions relevant for potential biomedical applications as antimicrobial soft tissue implants. First, we have studied AgNP migration from the nanocomposite to the adjacent alginate hydrogel mimicking soft tissue next to the implant. AgNP deposition was carried out by the initial burst release lasting for similar to 24 h yielding large aggregates on hydrogel surfaces and smaller clusters (similar to 400 nm in size) inside. However, the overall released content was low (0.67%) indicating high nanocomposite stability. In the next experimental series, release of AgNPs, 10-30 nm in size, from Ag/alginate microbeads in water was investigated under static conditions as well as under continuous perfusion mimicking vascularized tissues. Mathematical modeling has revealed AgNP release by diffusion under static conditions with the diffusion coefficient within the Ag/alginate hydrogel of 6.9x10(-19) m(2) s(-1). Conversely, continuous perfusion induced increased AgNP release by convection with the interstitial fluid velocity estimated as 4.6 nm s(-1). Overall, the obtained results indicated the influence of hydrodynamic conditions at the implantation site on silver release and potential implant functionality, which should be investigated at the experimentation beginning using appropriate in vitro systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available