3.8 Proceedings Paper

Structural Health Monitoring of Adhesively Bonded Joints: Proposing a new Method by use of Polymer Optical Fibers

Journal

1ST VIRTUAL EUROPEAN CONFERENCE ON FRACTURE - VECF1
Volume 28, Issue -, Pages 1249-1257

Publisher

ELSEVIER
DOI: 10.1016/j.prostr.2020.11.106

Keywords

adhesive bonding; structural health monitoring; polymer optical fiber; single lap joint

Ask authors/readers for more resources

According to the current state of the art, adhesively bonded joints cannot be tested completely non-destructively. This is the main motivation to permanently monitor adhesively bonded joints in order to record their structural integrity and - as a result - to ensure safe load transmission. By the use of permanent non-destructive Structural Health Monitoring (SHM) methods, structural damages in the adhesive bond can be detected at an early stage. This paper presents a new method for monitoring the structural integrity of adhesively bonded joints by integrating a Polymer Optical Fiber (POF) into the adhesive layer. The sensor concept is based on a deformation transfer from the adhesive to the POF, which results in a change in the cross-sectional shape of the POF. The cross-sectional shape influences the optical light propagation in the POF, which can be detected by simple optical measuring devices. The paper describes the general principle and first results of investigations on a structural adhesive (3M Scotch-Weld DP 609). The sensor signal is in a good relation to the stress state of the adhesive layer. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available