4.0 Article

Numerical simulation of chemical separations using multimodal adsorption isotherms

Journal

RESULTS IN APPLIED MATHEMATICS
Volume 7, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.rinam.2020.100122

Keywords

-

Funding

  1. National Science Foundation under NSF [CBET-1159622]

Ask authors/readers for more resources

High demand for next-generation biotherapeutics requires the development of novel adsorptive chromatography media to ensure high-volume throughput of purified product. These media use multiple modes of interaction with the product to recover it selectively from impurities in the solution, leading to mathematically complex models to describe the adsorption process. This work describes a simulation environment designed to handle the new isotherm relationships. The main advantage of the simulation algorithm is it allows isotherm models in which the solid phase concentration is defined implicitly in terms of the liquid phase concentration. Numerical results indicate optimal convergence of the method and show the effectiveness of the framework in matching experimental data. Simulations using both instantaneous and non-instantaneous adsorption model equations are provided. (C) 2020 The Authors. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available