3.9 Article

Open source arc analyzer: Multi-sensor monitoring of wire arc additive manufacturing

Journal

HARDWAREX
Volume 8, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ohx.2020.e00137

Keywords

3-D printing, gas metal arc weld, GMAW, metal inert gas welding, MIG welding, additive manufacturing, metal printing; Open-source hardware; RepRap; Welder; Welding; Metal 3-D printing, low cost metal 3-D printer, open-source metal 3-D printer; GMAW 3-D printing; Wire Arc Additive Manufacturing; WAAM

Funding

  1. Norsk Hydro ASA
  2. Aleph Objects
  3. Witte Endowment

Ask authors/readers for more resources

Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying the processing during WAAM, which includes voltage, current, sound, light intensity, radio frequency, and temperature data outputs. The open source arc analyzer is tested here on aluminum WAAM by varying wire feed rate and measuring the resultant changes in the sensor data. Visual inspection and microstructural analysis of the printed samples looking for the presence of porosity are used as the physical indicators of quality. The value of the sensors was assessed and the most impactful sensors were found to be the light and radio frequency sensors, which showed arc extinction events and a characteristic good weld peak frequency. (C) 2020 The Author(s). Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available