4.6 Article

Nickel-metal-organic framework nanobelt based composite membranes for efficient Sr2+ removal from aqueous solution

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.ese.2020.100035

Keywords

Metal-organic framework (MOF) nanobelts; Graphene oxide; Radioactive waste; Strontium ions; Adsorption

Funding

  1. National Key R&D Program of China [2016YFC1402504]

Ask authors/readers for more resources

The sorption removal of radionuclides Sr2+ using a freestanding functional membrane is an interesting and significant research area in the remediation of radioactive wastes. Herein, a novel self-assembled membrane consisting of metal-organic framework (MOF) nanobelts and graphene oxides (GOs) are synthesized through a simple and facile filtration method. The membrane possesses a unique interwove morphology as evidenced from SEM images. Batch experiments suggest that the GO/Ni-MOF composite membrane could remove Sr2+ ions from aqueous solutions and the Sr2+ adsorption capacity and efficiency of the GO/Ni-MOF composite membrane is relevant to the MOF content in the composite. Thus, the dominant interaction mechanism was interface or surface complexation, electrostatic interaction as well as ion substitution. The maximum effective sorption of Sr2+ over GO/Ni-MOF membrane is 32.99% with 2 mg composite membrane containing a high content of Ni-MOF at 299 K in 100 mg/L Sr2+ aqueous solution. The FT-IR and XPS results suggest that the synergistic effect between GO and Ni-MOF is determinant in the sorption Sr2+ process. The GO/Ni-MOF composite membrane is demonstrated to have the advantages of efficient removal of Sr2+, low cost and simple synthesis route, which is promising in the elimination of radionuclide contamination. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available