4.2 Review

Cuprate superconductors as viewed through a striped lens

Journal

ADVANCES IN PHYSICS
Volume 69, Issue 4, Pages 437-509

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00018732.2021.1935698

Keywords

Superconductivity; hole-doped cuprates; charge stripes; spin stripes; charge density wave; pair density wave; pairing mechanism; disorder

Funding

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0012704]

Ask authors/readers for more resources

Understanding the electron pairing in hole-doped cuprate superconductors has been a challenge, in particular because the normal state from which it evolves is unprecedented. Now, after three and a half decades of research, involving a wide range of experimental characterizations, it is possible to delineate a clear and consistent cuprate story. It starts with doping holes into a charge-transfer insulator, resulting in in-gap states. These states exhibit a pseudogap resulting from the competition between antiferromagnetic superexchange J between nearest-neighbor Cu atoms (a real-space interaction) and the kinetic energy of the doped holes, which, in the absence of interactions, would lead to extended Bloch-wave states whose occupancy is characterized in reciprocal space. To develop some degree of coherence on cooling, the spin and charge correlations must self-organize in a cooperative fashion. A specific example of resulting emergent order is that of spin and charge stripes, as observed in La2-xBaxCuO4. While stripe order frustrates bulk superconductivity, it nevertheless develops pairing and superconducting order of an unusual character. The antiphase order of the spin stripes decouples them from the charge stripes, which can be viewed as hole-doped, two-leg, spin-1/2 ladders. Established theory tells us that the pairing scale is comparable to the singlettriplet excitation energy, similar to J/2, on the ladders. To achieve superconducting order, the pair correlations in neighboring ladders must develop phase order. In the presence of spin stripe order, antiphase Josephson coupling can lead to pair-density-wave superconductivity. Alternatively, in-phase superconductivity requires that the spin stripes have an energy gap, which empirically limits the coherent superconducting gap. Hence, superconducting order in the cuprates involves a compromise between the pairing scale, which is maximized at x similar to 1/8, and phase coherence, which is optimized at x similar to 0.2. To understand further experimental details, it is necessary to take account of the local variation in hole density resulting from dopant disorder and poor screening of long-range Coulomb interactions. At large hole doping, kinetic energy wins out over J, the regions of intertwined spin and charge correlations become sparse, and the superconductivity disappears. While there are a few experimental mysteries that remain to be resolved, I believe that this story captures the essence of the cuprates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available