4.4 Article

CALYPSO: Private Data Management for Decentralized Ledgers

Journal

PROCEEDINGS OF THE VLDB ENDOWMENT
Volume 14, Issue 4, Pages 586-599

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.14778/3436905.3436917

Keywords

-

Funding

  1. ETH domain under PHRT [2017-201]
  2. AXA Research Fund
  3. Byzgen
  4. DFINITY
  5. Swiss Data Science Center (SDSC)

Ask authors/readers for more resources

Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed CALYPSO architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs. CALYPSO introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. CALYPSO provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our CALYPSO prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available