4.7 Article

Environmental impact of emerging desalination technologies: A preliminary evaluation

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2020.104099

Keywords

Environmental impact; Emerging desalination; Electrodialysis/electrodialysis reversal (ED/EDR); Capacitive deionization (CDI); Forward osmosis (FO); Membrane distillation (MD)

Ask authors/readers for more resources

Emerging desalination technologies are either a group of desalination techniques that have not undergone commercialization due to the need for technological advancements. The main drivers for developing such technologies are to reduce energy consumption, and hence cost, broaden feed water options, to reduce chemical additives, and, most importantly, to reduce the environmental impacts relative to conventional desalination technologies. Environmental impacts significantly vary according to the desalination technology being employed and the feedwater source. In this work, environmental impacts for some of the emerging desalination technologies, namely electrodialysis/electrodialysis reversal (ED/EDR), forward osmosis (FO), and membrane distillation (MD), are thoroughly discussed relative to the environmental impacts of conventional desalination technologies. A preliminary qualitative evaluation of the environmental impacts of these technologies is performed. The evaluation has revealed that the spontaneous FO process shows the highest environmental merits or benefits, i.e., lowest environmental impacts, followed by ED/EDR, and finally, MD, which were all environmentally benign relative to reverse osmosis (RO) desalination. Finally, we provided some conclusions and recommendations to consider while further developing such new desalination technologies to maximize its environmental benefits in the local and global context.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available