4.8 Article

Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems

Journal

GLOBAL CHANGE BIOLOGY
Volume 24, Issue 4, Pages 1651-1662

Publisher

WILEY
DOI: 10.1111/gcb.13930

Keywords

northern ecosystems; path model; snow water equivalent; snowmelt date; soil moisture; vegetation greenness

Funding

  1. Key Research and Development Programs for Global Change and Adaptation [2017YFA0603604]
  2. International Partnership Program of Chinese Academy of Sciences [131C11KYSB20160061]
  3. National Natural Science Foundation of China [41530528]
  4. Thousand Youth Talents Plan project in China

Ask authors/readers for more resources

Although seasonal snow is recognized as an important component in the global climate system, the ability of snow to affect plant production remains an important unknown for assessing climate change impacts on vegetation dynamics at high-latitude ecosystems. Here, we compile data on satellite observation of vegetation greenness and spring onset date, satellite-based soil moisture, passive microwave snow water equivalent (SWE) and climate data to show that winter SWE can significantly influence vegetation greenness during the early growing season (the period between spring onset date and peak photosynthesis timing) over nearly one-fifth of the land surface in the region north of 30 degrees, but the magnitude and sign of correlation exhibits large spatial heterogeneity. We then apply an assembled path model to disentangle the two main processes (via changing early growing-season soil moisture, and via changing the growth period) in controlling the impact of winter SWE on vegetation greenness, and suggest that the moisture and growth period effect, to a larger extent, result in positive and negative snow-productivity associations, respectively. The magnitude and sign of snow-productivity association is then dependent upon the relative dominance of these two processes, with the moisture effect and positive association predominating in Central, western North America and Greater Himalaya, and the growth period effect and negative association in Central Europe. We also indicate that current state-of-the-art models in general reproduce satellite-based snow-productivity relationship in the region north of 30 degrees, and do a relatively better job of capturing the moisture effect than the growth period effect. Our results therefore work towards an improved understanding of winter snow impact on vegetation greenness in northern ecosystems, and provide a mechanistic basis for more realistic terrestrial carbon cycle models that consider the impacts of winter snow processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available