4.6 Article

Development of a new IHA method for impact assessment of climate change on flow regime

Journal

GLOBAL AND PLANETARY CHANGE
Volume 156, Issue -, Pages 68-79

Publisher

ELSEVIER
DOI: 10.1016/j.gloplacha.2017.07.006

Keywords

Flow regime alteration; Climate change; Upper Niger River; IHA; Representative-IHA method

Funding

  1. National Natural Science Foundation of China [41371051, 51421006, 41561134016]
  2. key grant of Chinese Academy of Sciences [KZZD-EW-12]
  3. Ministry of Water Resources [201501032]

Ask authors/readers for more resources

The Indicators of Hydrologic Alteration (IHA) based on 33 parameters in five dimensions (flow magnitude, timing, duration, frequency and change rate) have been widely used in evaluation of hydrologic alteration in river systems. Yet, inter-correlation seriously exists amongst those parameters, therefore constantly underestimates or overestimates actual hydrological changes. Toward the end, a new method (Representative-IHA, RIHA) is developed by removing repetitions based on Criteria Importance Through Intercriteria Correlation (CRITIC) algorithm. RIHA is testified in evaluating effects of future climate change on hydro-ecology in the Niger River of Africa. Future flows are projected using three watershed hydrological models forced by five general circulation models (GCMs) under three Representative Concentration Pathways (RCPs) scenarios. Results show that: (1) RIHA is able to eliminate self-correlations amongst IHA indicators and identify the dominant characteristics of hydrological alteration in the Upper Niger River, (2) March streamflow, September streamflow, December streamflow, 30-day annual maximum, low pluses duration and fall rates tends to increase over the period 2010-2099, while July streamflow and 90-day annual minimum streamflow shows decrease, (3) the Niger River will undergo moderate flow alteration under RCP8.5 in 2050s and 2080s and low alteration other scenarios, (4) future flow alteration may induce increase water temperatures, reduction dissolved oxygen and food resources. Consequently, aquatic biodiversity and fish community of Upper Niger River would become more vulnerable in the future. The new method enables more scientific evaluation for multi-dimensional hydrologic alteration under the context of climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available