4.3 Article

Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA

Journal

GEOSPHERE
Volume 13, Issue 4, Pages 1066-1112

Publisher

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/GES01454.1

Keywords

-

Funding

  1. U.S. Department of Energy Yucca Mountain Project Office (Las Vegas, Nevada) [1950125-03]
  2. U.S. Geological Survey National Cooperative Geologic Mapping Program
  3. Society of Economic Geologists Foundation, Inc.
  4. American Philosophical Society
  5. Washington State University (Pullman)

Ask authors/readers for more resources

The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite). The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite). The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite). The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite). The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite). The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite). The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite). The McDermitt caldera (western USA) is commonly considered the point of origin of the Yellowstone hotspot, yet until now no geologic map existed of the caldera and its geology and development were incompletely documented. We developed a comprehensive geologic framework through detailed and reconnaissance geologic mapping, extensive petrographic and chemical analysis, and high-precision 40Ar/39Ar dating. The caldera formed during eruption of the 16.39 +/- 0.02 Ma (n = 3) McDermitt Tuff (named here), which is strongly zoned from peralkaline, aphyric, high-Si rhyolite (comendite) to metaluminous, abundantly anorthoclase-phyric, trachydacite, or Fe-rich andesite (icelandite).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available