4.6 Article

Lower-crustal flow and detachment in the North American Cordillera: a consequence of Cordillera-wide high temperatures

Journal

GEOPHYSICAL JOURNAL INTERNATIONAL
Volume 209, Issue 3, Pages 1779-1799

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggx138

Keywords

Creep and deformation; Heat flow; North America; Continental neotectonics; Dynamics of lithosphere and mantle; Rheology: crust and lithosphere

Ask authors/readers for more resources

In this paper, I make the case for widespread lower-crustal detachment and flow in the North American Cordillera. An indicator that geologically recent flow has occurred comes from seismic structure data showing the crust in most of the Cordillera from Mexico to Alaska is uniformly thin, 33 +/- 3 km, with a remarkably flat Moho. The flat Moho is in spite of extensive normal faulting and shortening that might be expected to deform the Moho. It has been concluded previously that the high topographic elevations are due to thermal expansion from Cordillera-wide high temperatures compared to stable areas, not due to a crustal root. I argue that the constant crustal thickness and flat Moho also are a consequence of temperatures sufficiently hot for flow in the lower crust. Lower-crust detachment and flow has previously been inferred for Tibet and the high Andes where the crust is thick such that unusually high temperatures are expected. More surprising is the similar conclusion for the Basin and Range of western USA where the crust is thin, but high temperatures have been inferred to result from current extension. There are now adequate data to conclude the Basin and Range is not unique in crustal thickness or in temperature. The crust in most of the Cordillera is similarly hot in common with many other backarcs. Five thermal constraints are discussed that indicate that for most of the Cordillera, the temperature at the Moho is 800-850 degrees C compared to 400-450 degrees C in stable areas. At these temperatures, the effective viscosity is low enough for flow near the base of the crust. The backarc Moho may be viewed as a boundary between almost 'liquid' lower crust over a higher viscosity, but still weak upper mantle. The temperatures are sufficiently high for the Moho to relax to a nearly horizontal gravitational equipotential over a few tens of millions of years. The inference of a weak lower crust also suggests that topography over horizontal scales of over 100 km must be short lived over a similar timescale, after the generating forces relax. A weak lower crust in the Cordillera is also shown by the effective elastic thickness, Te, which indicates significant strength only in the upper crust. Other indicators of lower-crust flow or detachment are seismic reflectors in the lower crust that are interpreted to result from horizontal shearing, and outcrop sections exhumed from the deep crust that exhibit horizontally sheared fabric.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available