4.6 Article

Toward a unifying, constitutive relation for sediment transport across environments

Journal

GEOMORPHOLOGY
Volume 277, Issue -, Pages 251-264

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.geomorph.2016.03.026

Keywords

Granular physics; Phase transitions; Landscape evolution models; Rheology

Funding

  1. Directorate For Geosciences
  2. Division Of Earth Sciences [1331841] Funding Source: National Science Foundation

Ask authors/readers for more resources

Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available