3.8 Proceedings Paper

An obstacle-interaction planning method for navigation of actuated vine robots

Publisher

IEEE
DOI: 10.1109/icra40945.2020.9196587

Keywords

-

Funding

  1. UniNA
  2. Compagnia di San Paolo
  3. NSF [1637446]
  4. NASA Space Technology Research Fellowship
  5. PON RI 2014-2020 ICOSAF

Ask authors/readers for more resources

The field of soft robotics is grounded on the idea that, due to their inherent compliance, soft robots can safely interact with the environment. Thus, the development of effective planning and control pipelines for soft robots should incorporate reliable robot-environment interaction models. This strategy enables soft robots to effectively exploit contacts to autonomously navigate and accomplish tasks in the environment. However, for a class of soft robots, namely vine-inspired, tipex-tending or vine robots, such interaction models and the resulting planning and control strategies do not exist. In this paper, we analyze the behavior of vine robots interacting with their environment and propose an obstacle-interaction model that characterizes the bending and wrinkling deformation induced by the environment. Starting from this, we devise a novel obstacle-interaction planning method for these robots. We show how obstacle interactions can be effectively leveraged to enlarge the set of reachable workspace for the robot tip, and verify our findings with both simulated and real experiments. Our work improves the capabilities of this new class of soft robot, helping to advance the field of soft robotics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available