3.9 Article

Thermal Management of Li-Ion Batteries With Single-Phase Liquid Immersion Cooling

Journal

IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY
Volume 1, Issue -, Pages 82-92

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/OJVT.2020.2972541

Keywords

Immersion cooling; thermal management; battery cooling; SLIC

Ask authors/readers for more resources

Development of effective thermal management techniques is essential in enabling further technical advances and wide public acceptance of lithium-ion based battery electrical storage. Both stationary battery arrays and electric vehicle (EV) batteries are pressed to enable charging and discharging at faster C rates, increased amp-hour capacity, longer service life and increased safety. All of these are dependent on more efficient and safer thermal management solutions. Traditional air cooling and indirect liquid cooling (cold plate) methods have limitations in effectiveness and weight. Engineered Fluids has recently completed a series of experiments demonstrating the high efficiency of Single-phase Liquid Immersion Cooling (SLIC) technology for the thermal management of Li-ion batteries. This article reviews the results of these experiments and discusses some of the issues and solutions for battery thermal management, and outlines the proper design of battery thermal management systems. We will discuss such topics as active cooling versus passive cooling, liquid cooling versus air cooling, cooling and heating versus cooling only systems, and relative needs of thermal management for VRLA, NiMH, and Li-Ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available