4.7 Article

Using quantile regression forest to estimate uncertainty of digital soil mapping products

Journal

GEODERMA
Volume 291, Issue -, Pages 55-64

Publisher

ELSEVIER
DOI: 10.1016/j.geoderma.2016.12.017

Keywords

Digital soil mapping; GlobalSoilMap; Quantile regression forest; Uncertainties; Regional scale

Categories

Funding

  1. French National Institute of Agronomical Research (INRA)
  2. French Research and Technology Agency (ANRT)

Ask authors/readers for more resources

Digital Soil Mapping (DSM) products are simplified representations of more complex and partially unknown patterns of soil variations. Therefore, any prediction of a soil property that can be derived from these products has an irreducible uncertainty that needs to be mapped. The objective of this study was to compare the most current DSM method - Regression Kriging (RK) - with a new approach derived from RandomForest - Quantile Regression Forest (QRF) - in regard to their ability of predicting the uncertainties of GlobalSoilMap soil property grids. The comparison was performed for three soil properties, pH, organic carbon and clay content at 5-15 cm depth in a 27,236 km(2) Mediterranean French region with sparse sets of measured soil profiles (1/13.5 km(2)) and for a set of environmental covariates characterizing the relief, climate, geology and land use of the region. Apart from classical performance indicators, comparisons involved accuracy plots and the visual examinations of the uncertainty maps provided by the two methods. The results obtained for the three soil properties showed that QRF provided more accurate and more interpretable predicted patterns of uncertainty than RK did, while having similar performances in predicting soil properties. The use of QRF in operational DSM is therefore recommended, especially when spatial sampling of soil observations are too sparse for applying RK. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available