4.7 Article

Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 197, Issue -, Pages 104-131

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2016.10.010

Keywords

Clumped isotopes; Oxygen isotopes; Paleothermometer calibration; Carbonate precipitation

Funding

  1. National Science Foundation [DGE-1256082, EAR-1156134, EAR-0955309]
  2. Geological Society of America
  3. UW School of Oceanography

Ask authors/readers for more resources

Carbonate clumped isotope (D47) thermometry has been applied to a wide range of problems in earth, ocean and biological sciences over the last decade, but is still plagued by discrepancies among empirical calibrations that show a range of Delta(47)-temperature sensitivities. The most commonly suggested causes of these discrepancies are the method of mineral precipitation and analytical differences, including the temperature of phosphoric acid used to digest carbonates. However, these mechanisms have yet to be tested in a consistent analytical setting, which makes it difficult to isolate the cause(s) of discrepancies and to evaluate which synthetic calibration is most appropriate for natural samples. Here, we systematically explore the impact of synthetic carbonate precipitation by replicating precipitation experiments of previous workers under a constant analytical setting. We (1) precipitate 56 synthetic carbonates at temperatures of 4-85 degrees C using different procedures to degas CO2, with and without the use of the enzyme carbonic anhydrase (CA) to promote rapid dissolved inorganic carbon (DIC) equilibration; (2) digest samples in phosphoric acid at both 90 degrees C and 25 degrees C; and (3) hold constant all analytical methods including acid preparation, CO2 purification, and mass spectrometry; and (4) reduce our data with O-17 corrections that are appropriate for our samples. We find that the CO2 degassing method does not influence Delta(47) values of these synthetic carbonates, and therefore probably only influences natural samples with very rapid degassing rates, like speleothems that precipitate out of drip solution with high pCO(2). CA in solution does not influence Delta(47) values in this work, suggesting that disequilibrium in the DIC pool is negligible. We also find the Delta(47) values of samples reacted in 25 and 90 degrees C acid are within error of each other (once corrected with a constant acid fractionation factor). Taken together, our results show that the Delta(47)-temperature relationship does not measurably change with either the precipitation methods used in this study or acid digestion temperature. This leaves phosphoric acid preparation, CO2 gas purification, and/or data reduction methods as the possible sources of the discrepancy among published calibrations. In particular, the use of appropriate O-17 corrections has the potential to reduce disagreement among calibrations. Our study nearly doubles the available synthetic carbonate calibration data for Delta(47) thermometry (adding 56 samples to the 74 previously published samples). This large population size creates a robust calibration that enables us to examine the potential for calibration slope aliasing due to small sample size. The similarity of Delta(47) values among carbonates precipitated under such diverse conditions suggests that many natural samples grown at 4-85 degrees C in moderate pH conditions (6-10) may also be described by our Delta(47)-temperature relationship. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available