4.5 Article

Is apparent fixational drift in eye-tracking data due to filters or eyeball rotation?

Journal

BEHAVIOR RESEARCH METHODS
Volume 53, Issue 1, Pages 311-324

Publisher

SPRINGER
DOI: 10.3758/s13428-020-01414-3

Keywords

Eye tracking; Fixational eye movements; Drift; Power spectrum; Signal color

Funding

  1. Lund University

Ask authors/readers for more resources

Researchers found that colored signals in eye-tracking recordings are mainly caused by filters in most eye trackers, except for the most precise eye tracker where the signal may partly reflect fixational eye movements. This suggests that careful examination of the filter properties in eye trackers is important for studying eyeball rotation accurately.
Eye trackers are sometimes used to study the miniature eye movements such as drift that occur while observers fixate a static location on a screen. Specifically, analysis of such eye-tracking data can be performed by examining the temporal spectrum composition of the recorded gaze position signal, allowing to assess its color. However, not only rotations of the eyeball but also filters in the eye tracker may affect the signal's spectral color. Here, we therefore ask whether colored, as opposed to white, signal dynamics in eye-tracking recordings reflect fixational eye movements, or whether they are instead largely due to filters. We recorded gaze position data with five eye trackers from four pairs of human eyes performing fixation sequences, and also from artificial eyes. We examined the spectral color of the gaze position signals produced by the eye trackers, both with their filters switched on, and for unfiltered data. We found that while filtered data recorded from both human and artificial eyes were colored for all eye trackers, for most eye trackers the signal was white when examining both unfiltered human and unfiltered artificial eye data. These results suggest that color in the eye-movement recordings was due to filters for all eye trackers except the most precise eye tracker where it may partly reflect fixational eye movements. As such, researchers studying fixational eye movements should be careful to examine the properties of the filters in their eye tracker to ensure they are studying eyeball rotation and not filter properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available