4.4 Article

An Efficient FLP-Based Toolkit for Spatiotemporal Control of Gene Expression in Caenorhabditis elegans

Journal

GENETICS
Volume 206, Issue 4, Pages 1763-1778

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.117.201012

Keywords

baf-1; DamID; FLP-out gene inactivation; genome engineering; MosSCI; PEEL-1 toxin; tissue-specific gene expression

Funding

  1. National Institutes of Health (NIH) Office of Research Infrastructure Programs [P40 OD-010440]
  2. WormBase - National Human Genome Research Institute at the NIH [U41 HG-002223]
  3. British Medical Research Council
  4. Spanish Ministry of Economy and Competitiveness [BFU2013-42709P, BFU2016-79313-P]
  5. European Regional Development Fund

Ask authors/readers for more resources

Site-specific recombinases are potent tools to regulate gene expression. In particular, the Cre (cyclization recombination) and FLP (flipase) enzymes are widely used to either activate or inactivate genes in a precise spatiotemporal manner. Both recombinases work efficiently in the popular model organism Caenorhabditis elegans, but their use in this nematode is still only sporadic. To increase the utility of the FLP system in C. elegans, we have generated a series of single-copy transgenic strains that stably express an optimized version of FLP in specific tissues or by heat induction. We show that recombination efficiencies reach 100% in several cell types, such as muscles, intestine, and serotonin-producing neurons. Moreover, we demonstrate that most promoters drive recombination exclusively in the expected tissues. As examples of the potentials of the FLP lines, we describe novel tools for induced cell ablation by expression of the PEEL-1 toxin and a versatile FLP-out cassette for generation of GFP-tagged conditional knockout alleles. Together with other recombinase-based reagents created by the C. elegans community, this toolkit increases the possibilities for detailed analyses of specific biological processes at developmental stages inside intact animals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available