4.4 Article

Compensatory Internalization of Pma1 in V-ATPase Mutants in Saccharomyces cerevisiae Requires Calcium- and Glucose-Sensitive Phosphatases

Journal

GENETICS
Volume 208, Issue 2, Pages 655-672

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.117.300594

Keywords

acidification; arrestin; calcineurin; endocytosis; phosphatase; proton pump; synthetic lethality; ubiquitination; vacuole

Funding

  1. NIH [R01 GM50322]
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM050322] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Loss of V-ATPase activity in organelles, whether through V-ATPase inhibition or V-ATPase (vma) mutations, triggers a compensatory downregulation of the essential plasma membrane proton pump Pma1 in Saccharomyces cerevisiae. We have previously determined that the -arrestin Rim8 and ubiquitin ligase Rsp5 are essential for Pma1 ubiquination and endocytosis in response to loss of V-ATPase activity. Here, we show that Pma1 endocytosis in V-ATPase mutants does not require Rim101 pathway components upstream and downstream of Rim8, indicating that Rim8 is acting independently in Pma1 internalization. We find that two phosphatases, the calcium-responsive phosphatase calcineurin and the glucose-sensitive phosphatase Glc7 (PP1), and one of the Glc7 regulatory subunits Reg1, exhibit negative synthetic genetic interactions with vma mutants, and demonstrate that both phosphatases are essential for ubiquitination and endocytic downregulation of Pma1 in these mutants. Although both acute and chronic loss of V-ATPase activity trigger the internalization of approximate to 50% of surface Pma1, a comparable reduction in Pma1 expression in a pma1-007 mutant neither compensates for loss of V-ATPase activity nor stops further Pma1 endocytosis. The results indicate that the cell surface level of Pma1 is not directly sensed and that internalized Pma1 may play a role in compensating for loss of V-ATPase-dependent acidification. Taken together, these results provide new insights into cross talk between two major proton pumps central to cellular pH control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available