4.7 Review

Calcia-magnesia-alumina-silicate (CMAS) attack mechanisms and roadmap towards Sandphobic thermal and environmental barrier coatings

Journal

INTERNATIONAL MATERIALS REVIEWS
Volume 66, Issue 7, Pages 451-492

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09506608.2020.1824414

Keywords

CMAS; thermal barrier coating; environmental barrier coating; sandphobic

Funding

  1. U.S. Army Research Laboratory [W911QX-16-D-0014]

Ask authors/readers for more resources

This review critically examines the current understanding of CMAS degradation mechanisms and mitigation approaches, emphasizing the importance of designing materials approaches to mitigate CMAS attack and presenting key future research areas for 'sandphobic' thermal and environmental barrier systems.
This review critically examines the current understanding of calcia-magnesia-alumina-silicate (CMAS) degradation mechanisms and mitigation approaches in thermal and environmental barrier coatings. First, the review introduces case studies of field returned engine components exposed to CMAS attack, followed by fundamental aspects of CMAS-induced degradation. Understanding CMAS adhesion, infiltration, spallation mechanics, and thermochemical attack mechanisms is crucial to designing materials approaches to mitigate CMAS attack. CMAS mitigation strategies have focused on reactive approaches aimed at crystallising molten CMAS at the earliest stage possible to inhibit infiltration. Promising approaches are presented, starting with fundamental reaction kinetics studies, followed by the effects of microstructure in actual coatings systems. Salient results on coating systems tested in various burner rigs and a full engine test are presented to benchmark the success of various mitigation strategies. Lastly, several key future research areas are presented in order to provide a roadmap towards 'sandphobic' thermal and environmental barrier systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available