4.6 Article

Transcriptome comparison reveals insights into muscle response to hypoxia in blunt snout bream (Megalobrama amblycephala)

Journal

GENE
Volume 624, Issue -, Pages 6-13

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2017.04.023

Keywords

Megalobrama amblycephala; Transcriptome; Hypoxia; Skeletal muscle

Funding

  1. Fundamental Research Funds for the Central Universities [2013PY067, 2662015PY205]
  2. Modern Agroindustry Technology Research System entitled Staple Freshwater Fishery Industry Technology System [CARS-46-05]

Ask authors/readers for more resources

The economic and biological significance of blunt snout bream (Megalobrama amblycephala) makes this species important to explore the underlying molecular mechanism of hypoxia response. In the present study, we compared the transcriptional responses to serious hypoxia in skeletal muscle among hypoxia tolerant (MT), sensitive (MS) and control (without hypoxia treatment, MC) M. amblycephala obtained according to the time difference of losing balance after hypoxia treatment. A total of 88,200,889 clean reads were generated and assembled into 44,493 unigenes. Transcriptomic comparison revealed 463 genes differentially expressed among different groups. A similar hypoxia-induced transcription patterns suggested a common hypoxia response involved in cell cycle, p53 signaling pathway, apoptosis, heart contraction and blood circulation. Interesting, four genes, heat shock protein beta-8 (hspb8), cysteine/serine-rich nuclear protein 1 (csrnp1), salt-inducible kinase 1 (sik1), and visinin-like la (vsnl1a) were up-regulated in MT Vs MC but down-regulated in MS Vs MC. Additionally, FoxO signaling pathway was significantly enriched only in MT Vs MC. These results not only provided the first insights into the mechanism that muscle tissue coped with the hypoxia stress in cyprinid species, but offered a theory base for breeding of M. amblycephala with hypoxia-resistant traits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available