4.5 Article

Mixture of experts with convolutional and variational autoencoders for anomaly detection

Journal

APPLIED INTELLIGENCE
Volume 51, Issue 6, Pages 3241-3254

Publisher

SPRINGER
DOI: 10.1007/s10489-020-01944-5

Keywords

Miture-of-experts; Convolutional and variational autoencoder; Anomaly detection; Latent detection

Funding

  1. JSPS KAKENHI [16K00239]

Ask authors/readers for more resources

This study proposes a method for anomaly detection using a mixture of CVAEs models, which learns the multi-manifold relationships of data through an ensemble of experts. The model shows superior performance on multiple datasets compared to existing methods for image anomaly detection tasks.
This study focused on the problem of anomaly detection (AD) by means of mixture-of-experts network. Most of the existing AD methods solely based on the reconstruction errors or latent representation using a single low-dimensional manifold are often not ideal for the image objects with complex background. However, modeling the data as a mixture of low-dimensional nonlinear manifolds is natural and promising for the classification of anomalies. In this study to realize the promise of multi-manifold latent information for AD, we propose a mixture of experts ensemble with two convolutional variational autoencoders (CVAEs) and convolution network (MEx-CVAEC) which explicitly learns manifold relationships of data that make use of multiple encoded detections. Additionally, we integrate a linear-based CAE as a gating network which optimizes the expert structures for efficient data characterization based on the manifold of the latent space. In the expert structure the data is re-encoded after each decoder to enhance the latent detection performance and the VAE is used as a core element in the encoder-decoder-encode (EDE) pipeline. To the best of our knowledge, this is the first study suggesting a mixture of CVAEs-based models for AD. The performance of the MEx-CVAE with EDE pipeline which we names as (MEx-CVAEC) compared over two basic MEx-CVAE model with ED pipeline based on logistic regression (MEx-L) and based on CAE (MEx-C) structures. In addition, the performance of the proposed model on three different datasets show the highest average AUC value than that of the state-of-the-art for image anomalies detection task.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available