4.6 Article

Blind MV-based video steganalysis based on joint inter-frame and intra-frame statistics

Journal

MULTIMEDIA TOOLS AND APPLICATIONS
Volume 80, Issue 6, Pages 9137-9159

Publisher

SPRINGER
DOI: 10.1007/s11042-020-10001-9

Keywords

Blind steganalysis; Video steganography; Information security; Motion vector; Video compression; H264; AVC

Funding

  1. University of Klagenfurt

Ask authors/readers for more resources

The paper introduces a method for detecting MV-based video steganography using spatio-temporal features for blind detection. Experimental results demonstrate that the performance of these features far exceeds that of existing steganalysis methods.
Despite all its irrefutable benefits, the development of steganography methods has sparked ever-increasing concerns over steganography abuse in recent decades. To prevent the inimical usage of steganography, steganalysis approaches have been introduced. Since motion vector manipulation leads to random and indirect changes in the statistics of videos, MV-based video steganography has been the center of attention in recent years. In this paper, we propose a 54-dimentional feature set exploiting spatio-temporal features of motion vectors to blindly detect MV-based stego videos. The idea behind the proposed features originates from two facts. First, there are strong dependencies among neighboring MVs due to utilizing rate-distortion optimization techniques and belonging to the same rigid object or static background. Accordingly, MV manipulation can leave important clues on the differences between each MV and the MVs belonging to the neighboring blocks. Second, a majority of MVs in original videos are locally optimal after decoding concerning the Lagrangian multiplier, notwithstanding the information loss during compression. Motion vector alteration during information embedding can affect these statistics that can be utilized for steganalysis. Experimental results have shown that our features' performance far exceeds that of state-of-the-art steganalysis methods. This outstanding performance lies in the utilization of complementary spatio-temporal statistics affected by MV manipulation as well as feature dimensionality reduction applied to prevent overfitting. Moreover, unlike other existing MV-based steganalysis methods, our proposed features can be adjusted to various settings of the state-of-the-art video codec standards such as sub-pixel motion estimation and variable-block-size motion estimation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available