4.5 Article

High B3GALT5 expression confers poor clinical outcome and contributes to tumor progression and metastasis in breast cancer

Journal

BREAST CANCER RESEARCH
Volume 23, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s13058-020-01381-9

Keywords

B3GALT5; Breast cancer; EMT; Metastasis; Clinical outcome

Categories

Funding

  1. Ministry of Science and Technology in Taiwan [MOST103-2321-B-182A-004, MOST104-2321-B-182A002, MOST106-3114-B-182A-001, MOST107-2321-B-182A-005, MOST108-2321B-182A-004]
  2. Taiwan Biosignature Project for Breast Cancer [BP004]
  3. Chang Gung Medical Foundation [OMRPG3C0011-16]
  4. Chang Gung Memorial Hospital at Linkou [CMRPG3G1531-CMRPG3G1533]

Ask authors/readers for more resources

The study found that higher expression of B3GALT5 in breast cancer tissues is associated with poor clinical outcomes, and it can enhance cell migration, invasion, mammosphere formation, and epithelial-to-mesenchymal transition. In a patient-derived xenograft (PDX) mouse model, B3GALT5 expression in breast cancer stem cells (BCSCs) is critical for tumor growth, lymph node, and lung metastasis.
BackgroundExistence of breast cancer stem cells (BCSCs) is implicated in disease relapse, metastasis, and resistance of treatment. beta 1,3-Galactosyltransferase 5 (B3GALT5) has been shown to be a pro-survival marker for BCSCs. However, little is known about the prognostic significance of B3GALT5 in breast cancer.MethodsPaired tissues (tumor part and adjacent non-tumor part) from a cohort of 202 women with breast cancer were used to determine the expression levels of B3GALT5 mRNA by qRT-PCR. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of relapse-free survival (RFS) and overall survival (OS). Both breast cancer cells and cancer stem cells (BCSCs) were used to see the in vitro effects of knockdown or overexpression of B3GALT5 on cell migration, invasion, and epithelial-to-mesenchymal transition (EMT). A patient-derived xenograft (PDX) model was used to see the in vivo effects of knockdown of B3GALT5 in BCSCs on tumor growth and metastasis.ResultsHigher expression of B3GALT5 in 202 breast cancer tissues, especially in adjacent non-tumor tissue, correlated with poor clinical outcomes including shorter OS and RFS in all patients, especially those with early stage breast cancer. In vitro studies showed B3GALT5 could enhance cell migration, invasion, mammosphere formation, and EMT. Of note, B3GALT5 upregulated the expression of beta -catenin and EMT activator zinc finger E-box binding homeobox 1 (ZEB1) pathway in BCSCs. In vivo studies showed B3GALT5 expression in BCSCs is critical for not only tumor growth but also lymph node and lung metastasis in PDX mice.ConclusionOur results demonstrated the value of B3GALT5 as a prognostic marker of breast cancer, especially among the early stage patients, and its crucial roles in regulating EMT, cell migration, and stemness thereby promoting breast cancer progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available