4.4 Article

Low-Frequency Acoustic Absorption of 3D Printed Cylinders

Publisher

ASME
DOI: 10.1115/1.4047706

Keywords

damping; materials in vibration and acoustics; noise control

Funding

  1. NASA Connecticut Space Grant Consortium

Ask authors/readers for more resources

The study found that adjusting the outer diameter and spacing of hollow cylindrical arrays can effectively increase the absorption of low-frequency sound, reducing disturbance to listeners.
Attenuating low-frequency sound is often problematic, due to the large space required for common absorptive materials to mitigate such noise. However, natural hollow reeds are known to effectively attenuate low frequencies while occupying relatively little space compared to traditional absorptive materials. The present study determines the effect of varied outer diameter and outer spacing on the 200-1600 Hz acoustic absorption of 3D printed arrays of hollow cylinders. Samples were tested in a 100-mm diameter normal incidence impedance tube such that cylinder length was oriented perpendicular to the incoming plane wave. By varying only one geometric element of each array, the absorption due to any parameter can be assessed individually. It was found that minimizing cylinder spacing and maximizing cylinder diameter resulted in increased overall absorption and produced more focused absorption peaks at specific low frequencies. Wider cylinder spacing produced a broader absorptive frequency range, despite shifting upward in frequency. Thus, manipulating these variables can specifically target absorption for low-frequency noise that would otherwise disturb listeners.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available