4.7 Article

Interspecies evolutionary dynamics mediated by public goods in bacterial quorum sensing

Journal

PHYSICAL REVIEW E
Volume 103, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.103.012403

Keywords

-

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)
  4. Agencia Nacional de Investigacion e Innovacion (ANII)
  5. Programa de Desarrollo de las Ciencias Basicas (PEDEClBA)

Ask authors/readers for more resources

Bacterial quorum sensing involves communication through molecules among bacteria, affecting gene expression and community properties. A network model is introduced to study the coevolution of genotypes, focusing on the trade-off between producers and nonproducers of public goods. The results suggest a complex interaction of factors determining the long-term survival of producer genotypes.
Bacterial quorum sensing is the communication that takes place between bacteria as they secrete certain molecules into the intercellular medium that later get absorbed by the secreting cells themselves and by others. Depending on cell density, this uptake has the potential to alter gene expression and thereby affect global properties of the community. We consider the case of multiple bacterial species coexisting, referring to each one of them as a genotype and adopting the usual denomination of the molecules they collectively secrete as public goods. A crucial problem in this setting is characterizing the coevolution of genotypes as some of them secrete public goods (and pay the associated metabolic costs) while others do not but may nevertheless benefit from the available public goods. We introduce a network model to describe genotype interaction and evolution when genotype fitness depends on the production and uptake of public goods. The model comprises a random graph to summarize the possible evolutionary pathways the genotypes may take as they interact genetically with one another, and a system of coupled differential equations to characterize the behavior of genotype abundance in time. We study some simple variations of the model analytically and more complex variations computationally. Our results point to a simple trade-off affecting the long-term survival of those genotypes that do produce public goods. This trade-off involves, on the producer side, the impact of producing and that of absorbing the public good. On the nonproducer side, it involves the impact of absorbing the public good as well, now compounded by the molecular compatibility between the producer and the nonproducer. Depending on how these factors turn out, producers may or may not survive.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available