4.6 Article

Efficient microwave-assisted Suzuki-Miyaura cross-coupling reaction of 3-bromo pyrazolo[1,5-a]pyrimidin-5(4H)-one: towards a new access to 3,5-diarylated 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine derivatives

Journal

RSC ADVANCES
Volume 11, Issue 3, Pages 1287-1302

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra07959f

Keywords

-

Ask authors/readers for more resources

A convenient and efficient synthetic route to C3-arylated 7-trifluoromethylpyrazolo[1,5-a]pyrimidin-5-one derivatives has been developed via Suzuki-Miyaura cross-coupling reaction. The method enables the synthesis of a variety of arylated compounds with potential anti-inflammatory properties and neurodegenerative disorder targeting abilities.
A convenient and efficient synthetic route to C3-arylated 7-trifluoromethylpyrazolo[1,5-a]pyrimidin-5-one derivatives has been reported starting from 3-bromo-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-5-one through a Suzuki-Miyaura cross-coupling reaction. The arylation (heteroarylation) strategy can be performed using a wide variety of aryl and heteroaryl boronic acids and requiring a tandem catalyst XPhosPdG2/XPhos to avoid the debromination reaction. These optimized conditions were successfully extended to the synthesis of 7-, 8- and 9-arylated pyrimido[1,2-b]indazol-2-ones from their corresponding brominated starting materials. Furthermore, the second C-5 arylation of C3-arylated pyrazolo[1,5-a]pyrimidin-5-ones was achieved under standard Suzuki-Miyaura cross-coupling conditions, after activating the C-O bond of the lactam function with PyBroP, giving access to a small library of 3,5-diarylated 7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidines in good to excellent yields. The interest of this approach has been highlighted by the synthesis of a known anti-inflammatory agent. Additionally, a preliminary biological evaluation has revealed that a number of derivatives display micromolar IC50 values against monoamine oxidase B, an important target in the field of neurodegenerative disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available