4.6 Article

Spin-state energetics of metallocenes: How do best wave function and density functional theory results compare with the experimental data?

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 23, Issue 1, Pages 151-172

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cp04727a

Keywords

-

Funding

  1. National Science Centre, Poland [2017/26/D/ST4/00774]
  2. PLGrid Infrastructure

Ask authors/readers for more resources

The study benchmarks the accuracy of quantum-chemical methods, with particular focus on coupled cluster theory and density functional theory, in reproducing the spin-state splittings of metallocenes. Results confirm high accuracy of the CCSD(T) method and highlight non-universality issues with density functional theory approximations.
We benchmark the accuracy of quantum-chemical methods, including wave function theory methods [coupled cluster theory at the CCSD(T) level, multiconfigurational perturbation-theory (CASPT2, NEVPT2) and internally contracted multireference configuration interaction (MRCI)] and 30 density functional theory (DFT) approximations, in reproducing the spin-state splittings of metallocenes. The reference values of the electronic energy differences are derived from the experimental spin-crossover enthalpy for manganocene and the spectral data of singlet-triplet transitions for ruthenocene, ferrocene, and cobaltocenium. For ferrocene and cobaltocenium we revise the previous experimental interpretations regarding the lowest triplet energy; our argument is based on the comparison with the lowest singlet excitation energy and herein reported, carefully determined absorption spectrum of ferrocene. When deriving vertical energies from the experimental band maxima, we go beyond the routine vertical energy approximation by introducing vibronic corrections based on simulated vibrational envelopes. The benchmarking result confirms the high accuracy of the CCSD(T) method (in particular, for UCCSD(T) based on Hartree-Fock orbitals we find for our dataset: maximum error 0.12 eV, weighted mean absolute error 0.07 eV, weighted mean signed error 0.01 eV). The high accuracy of the single-reference method is corroborated by the analysis of a multiconfigurational character of the complete active space wave function for the triplet state of ferrocene. On the DFT side, our results confirm the non-universality problem with approximate functionals. The present study is an important step toward establishing an extensive and representative benchmark set of experiment-derived spin-state energetics for transition metal complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available