4.6 Article

Deep eutectic solvents as non-traditionally multifunctional media for the desulfurization process of fuel oil

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 23, Issue 2, Pages 785-805

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cp05153e

Keywords

-

Funding

  1. National Natural Science Foundation of China [22072126, 21925203, 21676230, 21733009, 21373177]
  2. Young Scholars Research Fund of Yantai University [HY19B26]

Ask authors/readers for more resources

This review focuses on the physicochemical properties of deep eutectic solvents (DESs) and their applications in desulfurization processes, with particular emphasis on recent advances in selective aerobic oxidation desulfurization (AODS) and the biomimetic approach coupling DESs with polyoxometallates (POMs). The strategy of combining DESs as multifunctional agents with POMs as electron transfer mediators offers a novel path for oxidation catalysis, overcoming challenges such as O-2 activation. The potential applications and future opportunities of DESs in catalysis science are also discussed.
Deep eutectic solvents (DESs) have been intensively pursued in the field of separation processes, catalytic reactions, polymers, nanomaterial science, and sensing technologies due to their unique features such as the low cost of components, ease of preparation, tunable physicochemical properties, negligible vapor pressure, non-toxicity, renewability, and biodegradability in the recent decade. Considering these appealing merits, DESs are widely used as extraction agents, solvents and/or catalysts in the desulfurization process since 2013. This review is focused on summarizing the physicochemical properties of DESs (i.e., freezing point, density, viscosity, ionic conductivity, acidity, hydrophilicity/hydrophobicity, polarity, surface tension, and diffusion) to some extent, and their significant advances in applications related to desulfurization processes such as extraction desulfurization, extraction-oxidation desulfurization, and biomimetic desulfurization. In particular, we systematically compile very recent works concerning the selective aerobic oxidation desulfurization (AODS) under extremely mild conditions (60 degrees C and ambient pressure) via a biomimetic approach coupling DESs with polyoxometallates (POMs). In this system, DESs act as multifunctional roles such as extraction agents, solvents, and catalysts, while POMs serve as electron transfer mediators. This strategy is inspirational since biomimetic or bioinspired catalysis is the Holy Grail of oxidation catalysis, which overcomes the difficulty of O-2 activation via introducing electron transfer mediators into this system. It not only can be used for AODS, but also paves a novel way for oxidation catalysis, such as the selective oxyfunctionalization of hydrocarbon. Eventually, the conclusion, current challenges, and future opportunities are discussed. The aim is to provide necessary guidance for precisely designing tailor-made DESs, and to inspire chemists to use DESs as a powerful platform in the field of catalysis science.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available