4.6 Article

Voltage Profile Enhancement and Loss Minimization Using Optimal Placement and Sizing of Distributed Generation in Reconfigured Network

Journal

MACHINES
Volume 9, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/machines9010020

Keywords

distributed generation; voltage deviation; power loss minimization; particle swarm optimization; network reconfiguration; voltage stability enhancement

Funding

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP) [2018R1A2A1A05078680]

Ask authors/readers for more resources

Efficient network reconfiguration with the integration of distributed generation units plays a crucial role in mitigating power loss and voltage instability in distribution systems. The optimal placement and sizing of DGs, determined through a multi-objective particle swarm optimization algorithm, significantly improve system stability, reliability, and efficiency. Simulation results on an IEEE-33 bus radial distribution system demonstrate a substantial reduction in power loss and voltage deviation with the inclusion of DG units.
Power loss and voltage instability are major problems in distribution systems. However, these problems are typically mitigated by efficient network reconfiguration, including the integration of distributed generation (DG) units in the distribution network. In this regard, the optimal placement and sizing of DGs are crucial. Otherwise, the network performance will be degraded. This study is conducted to optimally locate and sizing of DGs into a radial distribution network before and after reconfiguration. A multi-objective particle swarm optimization algorithm is utilized to determine the optimal placement and sizing of the DGs before and after reconfiguration of the radial network. An optimal network configuration with DG coordination in an active distribution network overcomes power losses, uplifts voltage profiles, and improves the system stability, reliability, and efficiency. For considering the actual power system scenarios, a penalty factor is also considered, this penalty factor plays a crucial role in the minimization of total power loss and voltage profile enhancement. The simulation results showed a significant improvement in the percentage power loss reduction (32% and 68.05% before and after reconfiguration, respectively) with the inclusion of DG units in the test system. Similarly, the minimum bus voltage of the system is improved by 4.9% and 6.53% before and after reconfiguration, respectively. The comparative study is performed, and the results showed the effectiveness of the proposed method in reducing the voltage deviation and power loss of the distribution system. The proposed algorithm is evaluated on the IEEE-33 bus radial distribution system, using MATLAB software.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available