4.6 Article

Tuning adlayer-substrate interactions of graphene/h-BN heterostructures on Cu(111)-Ni and Ni(111)-Cu surface alloys

Journal

RSC ADVANCES
Volume 11, Issue 4, Pages 1916-1927

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra08622c

Keywords

-

Funding

  1. National Key R&D Program of China [2018YFE0122600]
  2. National Natural Science Foundations of China [21373112]
  3. China Postdoctoral Science Foundation [2016M591834]
  4. High level talent project of six talent peaks in Jiangsu Province [XCL-025]

Ask authors/readers for more resources

The study demonstrated that the interaction strength and interface distance of Gr/h-BN/metal can be tuned by regulating the chemical composition of the surface alloy. The absorption behavior of graphene on h-BN/Cu(111)-Ni and h-BN/Ni(111)-Cu interfaces varied significantly with different Ni/Cu atomic percentages.
The evolution of the interface and interaction of h-BN and graphene/h-BN (Gr/h-BN) on Cu(111)-Ni and Ni(111)-Cu surface alloys versus the Ni/Cu atomic percentage on the alloy surface were comparatively studied by the DFT-D2 method, including the critical long-range van der Waals forces. Our results showed that the interaction strength and interface distance of Gr/h-BN/metal can be distinctly tuned by regulating the chemical composition of the surface alloy at the interface. The initially weak interaction of h-BN/Cu(111)-Ni increased linearly with increasing Ni atomic percentage, and the interface distances decreased from similar to 3.10 to similar to 2.10 angstrom. For the h-BN/Ni(111)-Cu interface, the strong interaction of the NtopBfcc/hcp stacking decreased sharply with increasing Cu atomic percentage from 0% to 50%, and the interface distances increased from similar to 2.15 to similar to 3.00 angstrom; meanwhile, the weak interaction of the BtopNfcc/hcp stacking decreased slightly with increasing Cu atomic percentage. The absorption of graphene on h-BN/Cu(111)-Ni with BtopNhollow/NtopBfcc and BtopNhollow/BtopNfcc stacking was more energetically favorable than that with NtopBhollow/NtopBfcc and NtopBhollow/BtopNfcc at Ni atomic percentages under 75%, while the interaction energy of graphene on h-BN/Cu(111)-Ni increased sharply at Ni atomic percentages higher than 75% for the BtopNhollow/NtopBfcc and NtopBhollow/NtopBfcc stacking. In contrast, the interaction between graphene and the h-BN/Ni(111)-Cu surface increased sharply at Cu atomic percentages lower than 25% and decreased sharply at Cu atomic percentages higher than 75%. The interaction energies were higher when the percentage of Cu atom was between 25% and 75%. The analysis of charge transfer and density of states provided further details on the changing character and evolution trends of the interactions among graphene, h-BN, and Cu-Ni surface alloy versus the Ni/Cu atomic percentage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available