4.7 Article

Liquid Chromatography Mass Spectrometry Detection of Antibiotic Agents in Sputum from Persons with Cystic Fibrosis

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 65, Issue 2, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00927-20

Keywords

LC-MS; antibiotic; cystic fibrosis; sputum

Funding

  1. NIH NHLBI [5R01HL136647-04]
  2. National Science Foundation's Integrative Graduate Education and Research Traineeship (IGERT) program [DGE-1144901]

Ask authors/readers for more resources

Antibiotic therapy can significantly influence host microbial communities, but many studies lack details on antibiotic exposure. This research developed LC-MS methods to detect antibiotics in sputum samples from cystic fibrosis patients, revealing discrepancies between reported antibiotic use and actual detection, providing a means to incorporate antibiotic usage data into microbiome studies.
Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For similar to 37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available