4.8 Review

Recent progress of microwave absorption microspheres by magnetic-dielectric synergy

Journal

NANOSCALE
Volume 13, Issue 4, Pages 2136-2156

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr06267g

Keywords

-

Funding

  1. Ministry of Science and Technology of China [2018YFA0209102]
  2. National Natural Science Foundation of China [11727807, 51725101, 51672050, 61790581]
  3. Science and Technology Commission of Shanghai Municipality [16DZ2260600]

Ask authors/readers for more resources

The research focus is on magnetic-dielectric MA materials due to their unique functions and synergy loss mechanism, covering important research progress, functional materials, development challenges, and design principles.
Designing and developing high-performance microwave absorption (MA) materials for electromagnetic protection and radar detection have received widespread attention. Recently, magnetic-dielectric MA materials have become a research hotspot due to their unique complementary functions and synergy loss mechanism. Herein, we review important research progress of excellent MA systems combining strong magnetic components and dielectric substrates. The functional materials involve magnetic materials, carbon components, semiconductors, polymer and so on. For a comprehensive analysis, current development and challenges are firstly introduced in the background. Modern requirements for microwave energy conversion are elaborated in the following part. To highlight the key points, more attention has been paid to the magnetic-dielectric synergy microsphere: (i) core/yolk-shell structure, (ii) multi-component assembly and (iii) MOF-derived synergy composites. Meanwhile, classical and typical high-performance MA composites with a multi-loss mechanism are also mentioned in this review paper. Finally, the design principles, electromagnetic synergy, future mechanism exploration and device application are presented, which provides guidance for understanding MA materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available