4.6 Review

Recent progress in the development of biomass-derived nitrogen-doped porous carbon

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 9, Issue 7, Pages 3703-3728

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta09706c

Keywords

-

Funding

  1. Ministry of Science and Technology (MOST), Taiwan [108-2638-E-002-003-MY2]
  2. Hydrogen Energy Innovation Technology Development Program of the National Research Foundation of Korea (NRF) - Korean government (Ministry of Science and ICT (MSIT)) [NRF-2019M3E6A1064197]

Ask authors/readers for more resources

This review provides a focused discussion on the recent progress of biomass-derived nitrogen-doped porous carbon (NPC) and its applications, emphasizing the promising approach of N-doping for improving the physicochemical/electrochemical properties of carbon materials. The synthesis of NPCs from inexpensive biomass for energy storage applications is highlighted as a green and sustainable strategy.
This review offers a focused discussion on the recent progress of biomass-derived nitrogen-doped porous carbon (NPC) and its applications. Various synthesis methods for biomass-derived NPCs are introduced and critically reviewed. N-doping is a promising approach for further improving the physicochemical/electrochemical properties of carbon materials. Besides, NPC synthesis from inexpensive biomass for energy storage applications is a green and sustainable strategy. NPCs can be synthesized directly from algae, chitosan, and glucosamine without using any additional N precursor. The effect of synthesis methods on the physicochemical properties of NPCs offers a direction for optimizing the properties of NPCs for diverse applications. The utilization of NPCs in various applications, including catalysis and electrochemical energy storage (e.g., fuel cells, batteries, and supercapacitors), is reviewed. Besides, a discussion on the use of NPCs in oxidation and hydrogenation reactions, CO2 capture and reduction is provided. The factors controlling the electrocatalytic performance of NPC are evaluated, such as the effect of N-content and the type of N species in NPCs. Finally, to improve the rational design of biomass-derived NPCs for catalysis and energy storage applications, an outlook and conclusion are provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available