4.7 Article

The response of mesospheric H2O and CO to solar irradiance variability in models and observations

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 21, Issue 1, Pages 201-216

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-21-201-2021

Keywords

-

Funding

  1. Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung [200020_182239]
  2. Deutsche Forschungsgemeinschaft [JA836/431]
  3. Deutsche Forschungsgemeinschaft (DFG) [KU 3632/2-1]
  4. National Science Foundation [1852977]

Ask authors/readers for more resources

Water vapor (H2O) and carbon monoxide (CO) in the middle atmosphere show a pronounced response to solar irradiance variability. Different models exhibit varying magnitudes and patterns of response to solar variability, with overall agreement with observations. This study improves our understanding of the capabilities and limitations of state-of-the-art models in simulating a solar signal in the middle atmosphere's chemistry and dynamics.
Water vapor (H2O) is the source of reactive hydrogen radicals in the middle atmosphere, whereas carbon monoxide (CO), being formed by CO2 photolysis, is suitable as a dynamical tracer. In the mesosphere, both H2O and CO are sensitive to solar irradiance (SI) variability because of their destruction/production by solar radiation. This enables us to analyze the solar signal in both models and observed data. Here, we evaluate the mesospheric H2O and CO response to solar irradiance variability using the Chemistry-Climate Model Initiative (CCMI-1) simulations and satellite observations. We analyzed the results of four CCMI models (CMAM, EMAC-L90MA, SOCOLv3, and CESM1-WACCM 3.5) operated in CCMI reference simulation REF-C1SD in specified dynamics mode, covering the period from 1984-2017. Multiple linear regression analyses show a pronounced and statistically robust response of H2O and CO to solar irradiance variability and to the annual and semiannual cycles. For periods with available satellite data, we compared the simulated solar signal against satellite observations, namely the GOZCARDS composite for 1992-2017 for H2O and Aura/MLS measurements for 2005-2017 for CO. The model results generally agree with observations and reproduce an expected negative and positive correlation for H2O and CO, respectively, with solar irradiance. However, the magnitude of the response and patterns of the solar signal varies among the considered models, indicating differences in the applied chemical reaction and dynamical schemes, including the representation of photolyzes. We suggest that there is no dominating thermospheric influence of solar irradiance in CO, as reported in previous studies, because the response to solar variability is comparable with observations in both low-top and high-top models. We stress the importance of this work for improving our understanding of the current ability and limitations of state-of-the-art models to simulate a solar signal in the chemistry and dynamics of the middle atmosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available