4.6 Article

Mossbauer studies of spin and charge modulations in BaFe2(As1-xPx)2

Journal

PHYSICAL REVIEW B
Volume 103, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.103.024526

Keywords

-

Funding

  1. National Science Centre of Poland [2018/29/N/ST3/00705]
  2. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [JP19H05824]
  3. European Regional Development Fund in the IT4Innovations National Supercomputing Center - Path to Exascale Project within the Operational Programme Research, Development and Education Czech Science Foundations [CZ.02.1.01/0.0/0.0/16_013/0001791]
  4. Interdisciplinary Center forMathematical and Computational Modeling (ICM) [GA73-17, GB70-12]

Ask authors/readers for more resources

The electron structure characteristics of BaFe2(As1-xPx)(2) compounds at different doping concentrations were investigated, revealing changes in properties such as spin-density wave, spin-nematic phase, and superconducting transition under different doping concentrations.
The BaFe2(As1-xPx)(2) compounds with x = 0 (parent), x = 0.10 (underdoped), x = 0.31, 0.33, 0.53 (superconductors with T-c = 27.3, 27.6, 13.9 K, respectively), and x = 0.70, 0.77 (overdoped) have been investigated versus temperature using Fe-57 Mossbauer spectroscopy. Special attention was paid to regions of the spin-density wave (SDW) antiferromagnetic order, spin-nematic phase, and superconducting transition. The BaFe2(As0.90P0.10)(2) compound exhibits a reduced amplitude of SDW as compared to the parent compound and preserved universality class of two-dimensional magnetic planes with one-dimensional spins. The spin-nematic phase region for x = 0.10 is characterized by an incoherent magnetic order. BaFe2(As0.69P0.31)(2) shows coexistence of a weak magnetic order and superconductivity due to the vicinity of the quantum critical point. The charge-density modulations in the BaFe2(As0.67P0.33)(2) and BaFe2(As0.47P0.53)(2) superconductors are perturbed near T-c. Pronounced hump of the average quadrupole splitting across superconducting transition is observed for the system with x = 0.33. The phosphorus substitution increases the Debye temperature of the BaFe2(As1-xPx)(2) compound. Moreover, experimental electron charge densities at Fe nuclei in this material conclusively show that it should be recognized as a hole-doped system. The measured Mossbauer spectral shift and spectral area are not affected by transition to the superconducting state. This indicates that neither the average electron density at Fe nuclei nor the dynamical properties of the Fe sublattice in BaFe2(As1-xPx)(2) are sensitive to the superconducting transition. Theoretical calculations of hyperfine parameters determining the patterns of Mossbauer spectra of BaFe2(As1-xPx)(2) with x = 0, 0.31, 0.5, and 1.0 are performed within the framework of the density-functional 1-x- x/2 theory. These simulations provide an insight into changes of the immediate neighborhood experienced by Fe atoms upon the P for As substitution as well as enable us to explore influence of P doping on the electron density, electric field gradient, and hyperfine field at Fe nuclei in the BaFe2(As1-xPx)(2) system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available