4.5 Review

Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies

Journal

ADVANCED PHOTONICS
Volume 3, Issue 2, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.AP.3.2.024003

Keywords

high-speed modulators; silicon photonics; plasma dispersion effect; ferroelectrics; graphene; III-V on Si; organic (electro-optic) materials

Categories

Funding

  1. ERC starting grant ELECTRIC

Ask authors/readers for more resources

Optical links are advancing towards higher transmission speeds and shorter ranges, with Silicon photonics technology positioned to deliver high-speed modulators for future optical communication links. Recent developments in integrating various materials with SiPh modulators promise to extend performance beyond the limitations of silicon's physical properties.
Optical links are moving to higher and higher transmission speeds while shrinking to shorter and shorter ranges where optical links are envisaged even at the chip scale. The scaling in data speed and span of the optical links demands modulators to be concurrently performant and cost-effective. Silicon photonics (SiPh), a photonic integrated circuit technology that leverages the fabrication sophistication of complementary metal-oxide-semiconductor technology, is well-positioned to deliver the performance, price, and manufacturing volume for the high-speed modulators of future optical communication links. SiPh has relied on the plasma dispersion effect, either in injection, depletion, or accumulation mode, to demonstrate efficient high-speed modulators. The high-speed plasma dispersion silicon modulators have been commercially deployed and have demonstrated excellent performance. Recent years have seen a paradigm shift where the integration of various electro-refractive and electro-absorptive materials has opened up additional routes toward performant SiPh modulators. These modulators are in the early years of their development. They promise to extend the performance beyond the limits set by the physical properties of silicon. The focus of our study is to provide a comprehensive review of contemporary (i.e., plasma dispersion modulators) and new modulator implementations that involve the integration of novel materials with SiPh.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available