4.0 Article

The Design and Evaluation of a Mobile System for Rapid Diagnostic Test Interpretation

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3448106

Keywords

rapid diagnostic tests (RDTs); malaria; influenza; mobile health; image processing; image quality control

Ask authors/readers for more resources

RDTScan is a system designed for detecting and interpreting lateral flow RDTs using a smartphone, providing real-time guidance for clear image capture and automatic interpretation for accurate diagnostic decisions. Through field evaluations, RDTScan achieved high accuracy rates in at-home influenza testing in Australia and malaria testing by community healthcare workers in Kenya compared to expert interpretation of RDTs.
Rapid diagnostic tests (RDTs) provide point-of-care medical screening without the need for expensive laboratory equipment. RDTs are theoretically straightforward to use, yet their analog colorimetric output leaves room for diagnostic uncertainty and error. Furthermore, RDT results within a community are kept isolated unless they are aggregated by healthcare workers, limiting the potential that RDTs can have in supporting public health efforts. In light of these issues, we present a system called RDTScan for detecting and interpreting lateral flow RDTs with a smartphone. RDTScan provides real-time guidance for clear RDT image capture and automatic interpretation for accurate diagnostic decisions. RDTScan is structured to be quickly configurable to new RDT designs by requiring only a template image and some metadata about how the RDT is supposed to be read, making it easier to extend than a data-driven approach. Through a controlled lab study, we demonstrate that RDTScan's limit-of-detection can match, and even exceed, the performance of expert readers who are interpreting the physical RDTs themselves. We then present two field evaluations of smartphone apps built on the RDTScan system: ( 1) at-home influenza testing in Australia and (2) malaria testing by community healthcare workers in Kenya. RDTScan achieved 97.5% and 96.3% accuracy compared to RDT interpretation by experts in the Australia Flu Study and the Kenya Malaria Study, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available