4.8 Article

Effect of surface chemistry on bio-conjugation and bio-recognition abilities of 2D germanene materials

Journal

NANOSCALE
Volume 13, Issue 3, Pages 1893-1903

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr07579e

Keywords

-

Funding

  1. Ministry of Education (MOE), AcRF Tier 1 [RG9/19]
  2. Grant Agency of the Czech Republic (GACR) [19-17593Y]
  3. ERC CZ project from the Ministry of Education Youth and Sports (MEYS) [LL2003]

Ask authors/readers for more resources

Chemically modified germanenes with different surface ligands show strong influence on intrinsic fluorescence and affect bio-conjugation ability and bio-recognition efficiency towards analyte detection. Methylated germanene material demonstrates improved calibration sensitivity, reproducibility, and linearity for real sample analysis in optical bioassays.
The interest of the scientific community for 2D graphene analogues has been recently focused on 2D-Xene materials from Group 14. Among them, germanene and its derivatives have shown great potential because of their large bandgap and easily tuneable electronic and optical properties. With the latter having been already explored, the use of chemically modified germanenes for optical bio-recognition is yet to be investigated. Herein, we have synthesized two germanene materials with different surface ligands namely hydrogenated germanene (Ge-H) and methylated germanene (Ge-Me) and used them as an optical platform for the label-free biorecognition of Ochratoxin A (OTA), a highly carcinogenic food contaminant. It was discovered that firstly the surface ligands on chemically modified germanenes have strong influence on the intrinsic fluorescence of the material; secondly they also highly affect both the bio-conjugation ability and the bio-recognition efficiency of the material towards the detection of the analyte. An improved calibration sensitivity, together with superior reproducibility and linearity of response, was obtained with a methylated germanene (Ge-Me) material, indicating also the better suitability of the latter for real sample analysis. Such research is highly beneficial for the development and optimization of 2D material based optical platforms for fast and cost-effective bioassays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available