4.6 Article

Wireless Coexistence of Cellular LBT Systems and BLE 5

Journal

IEEE ACCESS
Volume 9, Issue -, Pages 24604-24615

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2021.3056909

Keywords

Wireless fidelity; Wireless communication; Bluetooth; Throughput; Interference; Wireless sensor networks; 5G mobile communication; 5G NR-U; BLE 5; coexistence; empirical evaluation; LBT; wireless medical devices

Ask authors/readers for more resources

This article investigates the coexistence of BLE 5 and cellular LBT systems in the 2.4 GHz band, demonstrating the impact on throughput and interframe delays by adjusting signal ratios and LBT priority classes.
The 2.4 GHz spectrum is home to several Radio Access Technologies (RATs), including ZigBee, Bluetooth Low Energy (BLE), and Wi-Fi. Accordingly, the technologies' spectrum-sharing qualities have been extensively studied in literature. License-Assisted Access (LAA) Listen-Before-Talk (LBT) has been identified in technical reports as the foundation for the channel access mechanism for 5G New Radio-Unlicensed (NR-U) operating in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band. The introduction of NR-U into this band raises new concerns regarding coexistence of the newcomer with traditional incumbents. This article reports an investigation of BLE 5 and cellular LBT coexisting systems by means of empirical evaluation. The importance of this study stems from that the studied LBT mechanism is indicative of how 5G NR-U would perform in the 2.4 GHz band. Tests were performed in conformity with the American National Standards Institute (ANSI) C63.27 standard for evaluation of wireless coexistence, and results were reported in terms of throughput and interframe delays. In accordance with the standard and under different BLE physical layers (PHYs) and LBT priority classes, three setups were investigated. These pertain to the three tiers of evaluation, which correspond to the criticality of the device under test. Results demonstrated how BLE throughput dropped as the intended-to-unintended signal ratio decreased, and LBT classes exhibited a diminishing effect as the class priority descended. Long Range BLE PHY was found to sustain longer gap times (i.e., delay) than the other two PHYs; however, it showed less susceptibility to interference. Results also demonstrated that low data rate BLE PHYs hindered the LBT throughput performance since they correspond to longer airtime durations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available