4.6 Article

Electron-exciton interactions in the exciton-polaron problem

Journal

PHYSICAL REVIEW B
Volume 103, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.103.075417

Keywords

-

Funding

  1. Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies [CE170100039]
  2. Australian Research Council Future Fellowship [FT160100244]

Ask authors/readers for more resources

Recent studies have shown that the absorption properties of moderately doped two-dimensional semiconductors can be described in terms of exciton polarons, which exhibit classical charge-dipole behavior in the long-range limit and are only slightly modified for moderate doping. The dependence on doping can be well captured by a model with a phenomenological contact potential.
Recently, it has been demonstrated that the absorption of moderately doped two-dimensional semiconductors can be described in terms of exciton polarons. In this scenario, attractive and repulsive polaron branches are formed due to interactions between a photoexcited exciton and a Fermi sea of excess charge carriers. These interactions have previously been treated in a phenomenological manner. Here, we present a microscopic derivation of the electron-exciton interactions which utilizes a mixture of variational and perturbative approaches. We find that the interactions feature classical charge-dipole behavior in the long-range limit, and that they are only weakly modified for moderate doping. We apply our theory to the absorption properties and show that the dependence on doping is well captured by a model with a phenomenological contact potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available