4.7 Article

Scalable real-time classification of data streams with concept drift

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.future.2017.03.026

Keywords

Parallel data stream classification; Adaptation to concept drift; High velocity data streams

Funding

  1. UK Engineering and Physical Sciences Research Council (EPSRC) [EP/L505043/1]
  2. Engineering and Physical Sciences Research Council [1361527] Funding Source: researchfish

Ask authors/readers for more resources

Inducing adaptive predictive models in real-time from high throughput data streams is one of the most challenging areas of Big Data Analytics. The fact that data streams may contain concept drifts (changes of the pattern encoded in the stream over time) and are unbounded, imposes unique challenges in comparison with predictive data mining from batch data. Several real-time predictive data stream algorithms exist, however, most approaches are not naturally parallel and thus limited in their scalability. This paper highlights the Micro-Cluster Nearest Neighbour (MC-NN) data stream classifier. MC-NN is based on statistical summaries of the data stream and a nearest neighbour approach, which makes MC-NN naturally parallel. In its serial version MC-NN is able to handle data streams, the data does not need to reside in memory and is processed incrementally. MC-NN is also able to adapt to concept drifts. This paper provides an empirical study on the serial algorithm's speed, adaptivity and accuracy. Furthermore, this paper discusses the new parallel implementation of MC-NN, its parallel properties and provides an empirical scalability study. (C) 2017 The Author(s). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available