4.6 Article

Direct particle-fluid simulation of flushing flow in electrical discharge machining

Journal

Publisher

HONG KONG POLYTECHNIC UNIV, DEPT CIVIL & STRUCTURAL ENG
DOI: 10.1080/19942060.2021.1877198

Keywords

Direct particle– fluid simulation; cut-cell method; electrical discharge machining; mono-hole inlet flushing; multiphase flow

Funding

  1. Deutsche Forschungsgemeinschaft [223500200]

Ask authors/readers for more resources

Efficient removal of material debris by flushing is crucial for the performance and surface quality in electrical discharge machining (EDM). Particle concentration affects the properties of the particle-dielectricum suspension, influencing heat transfer and manufacturing process. Increasing particle loading has a significant impact on heat transfer and the rate of particle flushing out of the cavity.
The efficient removal of material debris by flushing is critical for the performance and the surface quality of the electrical discharge machining (EDM) manufacturing process. The particle concentration alters the thermal, mechanical, and electrical properties of the particle-dielectricum suspension and affects the manufacturing process and the surface quality by inducing high thermal loads. For the first time, we perform a direct particle-fluid simulation of the flushing cycle in a generic EDM cavity using a hierarchical Cartesian sharp-interface cut-cell method. The flow around each debris particle is completely resolved and the heat transfer between the particles and the fluid is taken into account. The rate of material removal and the cooling performance of the flushing mechanism are studied for three-volume loadings. The results show that the flow around the particles has a pronounced impact on the heat transfer between the dielectricum and the workpiece. A particle loading of 14% increases the mean heat transfer by approximately 16%. The particle loading also has a pronounced impact on the rate at which particles are flushed out of the cavity. Increasing the initial volume loading from 6% to 14% decreases the amount of particles that get flushed out of the cavity by 14%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available