3.9 Article

Wake redirection at higher axial induction

Journal

WIND ENERGY SCIENCE
Volume 6, Issue 2, Pages 377-388

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/wes-6-377-2021

Keywords

-

Ask authors/readers for more resources

The study reveals that power gains obtained from standard wake redirection can be significantly increased to above 15% by operating tilted or yawed rotors at higher axial induction, potentially tripling the power gains. Even with moderate overinduction, significant enhancements in power gains are obtained.
The energy produced by wind plants can be increased by mitigating the negative effects of turbine-wake interactions. In this context, axial-induction control and wake redirection control, obtained by intentionally yawing or tilting the rotor axis away from the mean wind direction, have been the subject of extensive research but only very few investigations have considered their combined effect. In this study we compute power gains that are obtained by operating tilted and yawed rotors at higher axial induction by means of large-eddy simulations using the realistic native National Renewable Energy Laboratory (NREL) 5 MW actuator disk model implemented in the Simulator for On/Offshore Wind Farm Applications (SOWFA). We show that, for the considered two-row wind-aligned array of wind turbines, the power gains of approximately 5 % obtained by standard wake redirection at optimal tilt or yaw angles and reference axial induction can be more than tripled, to above 15 %, by operating the tilted or yawed turbines at higher axial induction. It is also shown that significant enhancements in the power gains are obtained even for moderate overinduction. These findings confirm the potential of overinductive wake redirection highlighted by previous investigations based on more simplified turbine models that neglected wake rotation effects. The results also complement previous research on dynamic overinductive yaw control by showing that it leads to large power gain enhancements also in the case where both the yaw and the overinduction controls are static, hopefully easing the rapid testing and implementation of this combined-control approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available