4.5 Article

Impact of fog drip versus fog immersion on the physiology of Bishop pine saplings

Journal

FUNCTIONAL PLANT BIOLOGY
Volume 44, Issue 3, Pages 339-350

Publisher

CSIRO PUBLISHING
DOI: 10.1071/FP16234

Keywords

chlorophyll fluorescence; coastal fog; electron transport rate; fog droplets; foliar water uptake; light response curve; photosynthesis; photosynthetic capacity; seasonal drought

Categories

Funding

  1. Kearney Foundation for Soil Science
  2. Decagon Devices Inc.

Ask authors/readers for more resources

Fog-drip to the soil is the most obvious contribution of fog to the water budget of an ecosystem, but several studies provide convincing evidence that foliar absorption of fog water through leaf wetting events is also possible. The focus of our research was to assess the relative importance of fog drip and fog immersion (foliar wetting) on leaf gas-exchange rates and photosynthetic capacity of a coastal pine species, Bishop pine (Pinus muricata D.Don), a drought-sensitive species restricted to the fog belt of coastal California and offshore islands. In a controlled experiment, we manipulated fog water inputs to potted Bishop pine saplings during a 3 week dry-down period. Ten saplings were randomly assigned one of two fog treatments: (1) fog drip to the soil and canopy fog immersion, or (2) fog immersion alone. Five saplings were assigned the control' group and received no fog water inputs. We found that fog immersion alone significantly increased carbon assimilation rates and photosynthetic capacity of saplings as soil moisture declined compared with those that received no fog at all. The highest carbon assimilation rates were observed in saplings that also received fog drip. Soil moisture was 40% higher in the fog immersion compared with the control group during the dry-down, indicating a reduced demand for soil water in saplings that had only leaves wetted by canopy interception of fog. Leaf-level physiology is more strongly enhanced by fog drip compared with fog immersion, although the results of this study provide evidence that foliar absorption is a viable mechanism by which Bishop pines use fog water and that it can enhance instantaneous plant carbon gain and potentially whole plant productivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available