4.7 Article

Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities

Journal

FUNCTIONAL ECOLOGY
Volume 32, Issue 1, Pages 214-227

Publisher

WILEY
DOI: 10.1111/1365-2435.12948

Keywords

biodiversity-ecosystem functioning; evapotranspiration; niche partitioning; plant species richness; root water uptake; soil moisture

Categories

Funding

  1. German federal state of Thuringia
  2. German Research Foundation [FOR1451]
  3. ExpeER I3 project

Ask authors/readers for more resources

Efficient extraction of soil water is essential for the productivity of plant communities. However, research on the complementary use of resources in mixed plant communities, and especially the impact of plant species richness on root water uptake, is limited. So far, these investigations have been hindered by a lack of methods allowing for the estimation of root water uptake profiles. The overarching aim of our study was to determine whether diverse grassland plant communities in general exploit soil water more deeply and whether this shift occurs all the time or only during times of enhanced water demand. Root water uptake was derived by analysing the diurnal decrease in soil water content separately at each measurement depth, thus yielding root water uptake profiles for 12 experimental grasslands communities with two different levels of species richness (4 and 16 sown species). Additional measurements of leaf water potential, stomatal conductance, and root traits were used to identify differences in water relations between plant functional groups. Although the vertical root distribution did not differ between diversity levels, root water uptake shifted towards deeper layers (30 and 60cm) in more diverse plots during periods of high vapour pressure deficit. Our results indicate that the more diverse communities were able to adjust their root water uptake, resulting in increased water uptake per root area compared to less diverse communities (52% at 20cm, 118% at 30cm, and 570% at 60cm depth) and a more even distribution of water uptake over depth. Tall herbs, which had lower leaf water potential and higher stomatal conductance in more diverse mixtures, contributed disproportionately to dynamic niche partitioning in root water uptake. This study underpins the role of diversity in stabilizing ecosystem function and mitigating drought stress effects during future climate change scenarios. Furthermore, the results provide evidence that root water uptake is not solely controlled by root length density distribution in communities with high plant diversity but also by spatial shifts in water acquisition. A is available for this article.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available