4.7 Article

Evaluating the Drought Endurance of Landscaping Ground Cover Plants in a Roof Top Model

Journal

HORTICULTURAE
Volume 7, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/horticulturae7020031

Keywords

photosynthesis; stress response; drought tolerance; low maintenance gardens

Categories

Ask authors/readers for more resources

This study aimed to investigate potential indicators for evaluating plant tolerance to water-deficit situations, testing 25 commercial ground cover species under different conditions. Results showed that signs of stress were clearly observed after three days of water withdrawal, and seven plant species were identified as suitable for tropical, urban ground covers.
Vegetative ground covers are commonly used in urban, tropical roadside gardens. Such landscaping ground covers usually encounter extreme water-deficits and high temperatures from vehicles and urban infrastructures. However, information about the plant species that are appropriate for low maintenance gardens is not available, especially in tropical areas. This study aimed to investigate potential indicators for evaluating plant tolerance to water-deficit situations. A non-irrigated rooftop model was used to test 25 commercial ground cover species in a greenhouse at Mahidol University, Nakhon Pathom Province, Thailand. Each of these 25 species was potted and subjected to one of two conditions: with or without irrigation for 7 days. Physiological responses relevant to plant endurance during water-deficits were monitored, including changes in leaf relative water content (RWC), percent stomatal opening, leaf surface temperature, leaf total chlorophyll content, leaf greenness, maximum quantum yield, and light quantum yield. Moreover, an additional indicator of landscape utility was evaluated, where each species was judged by trained panelists for their esthetic appeal. Diverse responses were observed based on the type of physiological parameter measured, plant species, and duration of drought conditions. Water withdrawal for three days was deemed an appropriate time to determine plant tolerance to water-deficit conditions, as signs of stress were clearly observed in three parameters, i.e., changes in leaf RWC, percent stomatal opening, and esthetic score. Lastly, cluster analysis revealed that seven plant species were appropriate for tropical, urban ground covers, as they had high endurance under water-deficit conditions, namely, Allium schoenoprasum, Liriope muscari, Aloe sp., Sedum x rubrotinctum, Alternanthera ficoidea, Pilea libanensis and Plectranthus scutellarioides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available